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A control system with nonlinear feedback is considered. The origin is a stable equilib- 

rium state of this system. Necessary and sufficient conditions are obtained under with 
the system has more than one stationary state. The question of the stability of the 

“superfluous” equilibrium states is investigated. Certain elementary properties of the 
origin’s region of attraction are examined. 

1. Strtement of rhr problem. We consider a control system described by 
the following matrix differential equation with constant coefficients : 

&/dt=Ax+bu (1.1) 

;er; “1,= II 9 IL A = I!_** “9 asj H b = 11 bi /j are matrices of orders (n ‘X I), (n X n), 
n , respectively, u 1s the control function having the form 

24 = cp (4 (a = cx) (1.2) 

Here c = 11 Ci II is a constant matrix of order (1 x n) and cp (a) is a continuous function 
satisfying the following constraints : 

q)(O) =% qm = k (O<k<m) (1.3) 

O<cp(s)/~<k when a#0 V.4) 

cp(a)i Q--t 0 as 141-00 (1.5) 

We shall assume that the usual existence and uniqueness conditions of the solutions 
under any initial conditions are fulfilled for the system (1. I),-& 2). 

As a consequence of condition (1.3) the origin will be an equilibrium state of system 

(1.1). (1.2). Let us assume that this state is an asymptotically stable equilibrium posi- 
tion of system (1.1) when u = fE5, i.e. of the system 

(1.6) 
In other words, let 

ax /’ dt = (A + kbc)x 

Re&<O (i = 1, 2, . . . , n) (1.7) 

where the hi (i = 1, 2, . . . . n) are the roots of the characteristic equation 

det (A + kbc - hE) = 0 (1.8) 

As is easily seen [ 11, under condition (1.7) the state x = 0 is an asymptotically 
stable stationary state of system (1.1). (1.2). 

We pose the problem: determine the conditions under which system (1.1),(1.2) has 
stationary states not just at the origin, i.e. has more than one stationary state. In other 

words, the problem consists in determining the conditions under which “superfluous” 

(unnecessary) equilibrium positions arise in system (1.1). (1.2). In the case when more 
than one stationary state are found in the system, we consider the question of the stabi- 
lity of these states. 

The question on the number of equilibrium states and on their stability will be exam- 
ined below also for the case when the function cp (u) is discontinuous at U= O(k = co). 
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In this case the constraints imposed on the functi0n.q (U) will be somewhat modified. 

2. StatlOnaty Itat in the 0118 b < 00. It is obvious that those and 
only those states which satisfy the conditions 

Ax = - bq (4 (2.4) 

are the equilibrium positions of system (1. l), (1.2). 

Let us consider the case when the matrix A has zero eigenvalues (det (A) = 0). 
Here the rank r of matrix A is less than n, 

r(A)<n (2.2) 

We prove that the following lemma holds. 
Lemma. Under the condition det (A) = 0 the system (1.1). (1.2) has a unique 

equilibrium state at the origin. 

Let r 11 h Ab, . . . 9 An-lb II= p < n (2.3) 

When p - I , system (1.1) will be completely controllable in Kalman’s sense p]. 
As follows, for example, from p, 41, system (1.1). (1.2) can be reduced by means of 

the nonsingular transformation z = QZ to the form 

dz,ldt = A,z, + A,az + bg-p (c,z, + czzz), dzsldt = Azzz (2.4) 

Here zl, za, Al, AZ, A,, 4, Q,CZ are matrices of orders (p X i), f(n - p) x 11, (p X p), 

[(n - P) x (n - p)J. fp x (n - p)l, (P x I), (1 x P), 11 x (n - pjl . respectively. 
Moreover, 

r(V)=rj)bl,Albl, . . ..Af-‘blll= p (2.5) 

From the condition that system (2.4) is asymptotically stable it follows that r (AZ) = 
E= n - p, and, hence, from condition (2.2) we obtain 

r (A,) < p (2.6) 

From the equality r (As) = n - p it follows that Eq. (2.1) in the variables ~1, zt 

acquires the form A,z, = - bl’p (qzJ, z2 = 0 (2.7) 

Thus, the investigation of Eq. (2.1) is reduced to the investigation of Eq. (2.7) of order 

p, for which equality (2.5) holds. 

The columns of matrix V are linear combinations of the columns of the matrix 11 A,, 

bl 1 and, therefore, r,(V) < r 11 A,, b, II (see [53). Since r II A,, by II Q P, we conclude 
from relation (2.5) that 

r II 4, h II = P (2.8) 

As is seen from (2.6) and (2.8). note that r (A,) = p - 1. 

Relations (2.6) and (2.8) form the foundation for the assertion that equality (2.7) can 
hold only when cp (~1 .zl) = 0. From condition (1.3) and inequality (1.4) it follows that 
cp (a) = 0 only when IS = 0. Therefore, Eq. (2.7) can have only such solutions z1 for 
which clzl = 0. Consequently, these solutions z1 satisfy the equations 

A1z, = 0, ClZl = 0 (2.9) 

If system (2.9) has even one nontrivial solution, then it has nontrivial solutions arbitra- 
rily close to the origin. This signifies that system (2.4) has stationary states arbitrarily 
close to the origin, but this contradicts the condition that the state I = 0 is asymptotic- 
ally stable. Consequently, Eq. (2.9) has only a trivial solution. Hence it follows that 
Eq. (2.7j, and, therefore, also Eq. (2.1). has only a trivial solution. 
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Let us now assume that 
r(A) = n (2.10) 

Then all the stationary states of system (1. l), (I, 2) satisfy the matrix relation 

X= - A-%$ (cz) (2.11) 

i.e. are located on a straight line passing through the origin. If a state z satisfies con- 
dition (2. XL), then the quantity (3 = cx satisfies, obviously, the scalar equation 

(f = - CA-‘by, ((I) (2.12) 

The converse is also easily shown : if a certain number o is a solution of Eq, (2.22). then 
the vector 2 = - A-‘bq (a) (2.13) 

is a solution of Eq. (2.11). 
Thus, the matrix equation (2.11) has as many solutions as does the scalar equation 

(2.12). Therefore, in order to solve the problem we have posed it suffices to investigate 
Eq. (2.12). The number of roots of Eq. (2.12) depends on what the quantify CA-V 
itself represents. Our judgement on this quantity, needed for solving the problem being 
considered, can be made by using the stability condition (1.7) for the linear system 
(1.6). 

As follows from the determinantal relation derived, for example, in @] (p. 132). the 
characteristic equation (1.8) can be represented in the form 

det (A - AE) [1 + kc (d - hE)-‘bl. = 0 (2.14) 

For the fulfillment of inequalities (1.7) it is necessary that the sign of the coefficient 
of the highest power of a in Eq. (2.14) be equal to the sign of the free term . This 
necessary stability condition has the form 

(-1)” det (A) II + kcd-‘bJ > 0 (2.15) 

By I we denote the number of positive efgenvalues of matrix A. Then, obviously, 

(-l)n-rdet(d)>O (2.16) 
Using (2.16). instead of inequality (2.15) we obtain 

(-l)! 11 + &cd-‘61 > 0 (2.17) 

From inequality (2.17) it ensues that 

~A-~b<--4/k (O<--//A-‘b<k) (11:2p+i) (2.18) 

cd-lb > -l/k (I = ZP) (P is an integer) (2.19) 

Let us now return to the investigation of Eq. (2.12). Here we shall be interested in 
the nonzero roots. 

At first let l = 2p f 1. Since here CA- 1 b # 0, Eq, (2.12) can be represented in 
the form 

‘p C(J) / = = - 1 / cd-lb (2.20) 

The left hand side of relation (2.20) is a continuous function and, moreover, rp (0)/U+ 
-+ k as CT -+ 0. From condition (1.5) it follows that in the presence of inequality 
(2.18) Eq, (2.20) has at least two roots :a positive one u, and a negative one o._, (Fig.1). 

Now let I = Zp. If. cd -lb = 0, then Eq. (2.12) has only a trivial solution. When 
cd-lb + 0 , Eq. (2.12) can be written in form (2.20). If cd-lb (0, then, as we see 
from inequality (2,19), --I/cd-‘b>k. From condition (1.4) it ensues that Eq, (2.20) 
has no roots. If cd-lb > 0, then -1 1 cd-lb < 0 and, as again follows from condi- 
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tion (1.4), Eq. (2.20) has no roots, Consequently, if 1 = 2p, Eq. (2.11) has the unique 

solution x = 0. 

Fig. 1 

at least three stationary states. 

Thus, taking into account the lemr 
ma proved above, we obtain the foL 
lowing two theorems. 

Theorem 2.1. More than one 
stationary state exist in system (l.l), 
(1.2) if and only if matrix A has no 

zero eigenvalues and the number of 
its positive eigenvalues is odd. 

Theorem 2.2. If matrix/l 
does not have zero eigenvalues and 

the number of its positive eigenvalues 

is odd, then system (1.1). (1.2) has 

Corollary. If all the eigenvalues of matrix A have nonpositive real parts, then 
system (1. l), (1.2) has only one equilibrium state z = 0. In order to find all the sta- 
tionary states of the system we need to find all the roots of Eq. (2.12) and to substitute 
them into the right-hand side of relation (2.13). 

As an example consider the following function ‘p ((I): 

.-M (k5<-M) 
I( = cp (0) = 

( 
ka (IkolGM) (M = const > 0) (2.21) 
M (ks >M) 

Function (2.21). describing a linear feedback with saturation, obviously satisfies con- 

straints (1.3)-(1.5). When the hypotheses of Theorem 2.2 are fulfilled, Eq, (2.12) has 
only three solutions, 

c-1 = CA-‘bM, Iso = 0, u1 = - CA-‘bM 
The three states 

x-1 = A-‘bM, x,, = 0, xl = -_A-1bM (2.22) 

will be equilibrium states of system (1.1). (2.21). 

We note that the question of the stationary states of controlled systems was analyzed 
in a somewhat different formulation in Is]. 

3. Thr CABS k: = 00. Let us consider the case when the function cp (5) is dis- 
continuous at o = 0. let 

limcp(c)=q)(-OO)<O, U~~rp(c)=cp(+O)>O 
0-r -0 

We shall assume that the function cp (a) is continuous when d # 0 . At (T = 0 we 
define the function q, (u) in correspondence with the theory of differential equations 
with discontinuous right-hand sides fl]. Let cb =+ 0, then 

cAx/cb when x E P, 

when xt~ P, 
(3.1) 

where 
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PI - (2: cx = 0, -cAx / cb < cp (-0)) 
P, = (2: cx = 0, cp (-0) < - CAX / cb G cp (t-0)) 
P 3 = (5: cx = 0, cp (+O) < --cAx / 4 

The definition (3.1) of the value cp (0) is such that the derivative o” relative to system 

(1.1). (1.2) equals zero at points x E P, . In region P, system (1. l), (1.2) has the form 

(3.2) 

At the points 5 GJ P, or z E: P, the derivative o” # 0, i.e. the phase trajectories 

“pierce” the segments ,P,and P, of the hyperplane Cx = 0. 

As before we shall take‘ it that conditions (1.4) (the left part) and (1.5) are fulfilled. 
As we see from (3. l), the state x = 0 is a stationary state of system (1. l), (1.2). 

We shall assume that this equilibrium state is asymptotically stable. The necessary and 

sufficient condition for the asymptotic stability of the state 5 = 0 contains two requi- 

rements [8]. 

The first requirement is that the set Psshould be an “attracting” set. This requirement 
is described in the form of the inequality 

cb < 0 (3.3) 

The second requirement is that a motion starting from points z e P, sufficiently close 

to the origin tends asymptotically to the origin, remaining on set Pa. Equation (3.2). 
which describes the motion of the system on set P,(the so-called sliding motion), obvi- 

ously has one zero eigenvalue h, = 0 corresponding to the integral cz = const. The 
second requirement reduces to this, that all the remaining eigenvalues of system (3.2) 
have negative real parts, 

Re&<O (i = 2,3, . . . , n) (3.4) 

The values hi (i = 1,2, . . . . n) are the roots of the characteristic equation 

det (A - bcA / cb - hE) = 0 (3.5) 

We now proceed directly to the investigation of the question regarding the stationary 
states. There is only one equilibrium state x = 0 on the plane cx = 0 . Indeed, there 
are no stationary states on the sets P, and’psbecause on them cr” # 0 (by virtue of 

inequality (3.3) o’ ( 0 when x E P, and cr’ > 0 when x E PJ. on the set P, 
there cannot be stationary states besides the state x = 0 as a consequence of condition 

(3.4). 
The investigation of the question on equilibrium states lying ontside the plane cz = 0 

reduces to the examination of Eq. ( 2.1). under condition (2.2) the investigation of Eq. 
(2.1). analogous to the one carried out in sect. 2. leads to the lemma formulated in that 
section. Thus this lemma holds also in the case k = 00. 

The course of the arguments as presented in the preceding section for condition (2.2) 
is preserved for condition (2.10). We should set k = 0~ in inequalities (2.18) and 

(2.19). However, let us derive these inequalities for the case k = oo by means of rigor- 
ous arguments. As follows from p], the characteristic equation (3.5) can be written in 
the form det (A - hE) [I - (cA/cb)(A - hE)-1 b] = 0 (3.6) 

In this equation the free term equals zero. The expansion of the expression occurring 
within the brackets in powers of h starts with the term - h (CA-%c6). For the fulfillment 
of inequalities (3.4) it is necessary that the sign of the coefficient of the highest power 
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An in E% (3.6) be equal to the sign of the coefficient of h. This necessary condition 
has the form (- i)n det (d) (- cd-%/c&) > 0 (3.7) 

Using inequalities (2.16) and (3.3). instead of (3.7) we obtain the expression 

(- i)“c&‘b > 0 

Hence follow the inequaIities which are obtained from (2. X8), (2.19) with k = oc 

CA-fb < 0 (I = zp + 1), CA-%>0 (I= 2p) 

Thus, Theorems 2.1 and 2.2 hold in the case k = 00 . 
A typical example for the present section is a system with relay feedback. In such 

a system the function cp (a) has the form 

,‘p (o) = --M P<O), ‘p PJ) = Jf (o > 0) 

With due regard to this formula and to formula (3.1) the expression for the control can 
be written in the form 

i 

- IPI (CZ <0 or cx = 0 and - cAt/cb < - M) 
u = - cAx/cb (m = 0 and 1 cAx/cb 1 < M) (3.8) 

*If (cx > 0 or cz = 0 and - cAxfcb > M) 

The function .r# (of satisfies all the conditions listed in this section. When the hypotheses 
of Theorem 2.2 are fulfilled, system (1. l), (3.8) has the three stationary states (2.22). 

Let us present one more example. 

We consider the motion of an aircraft at a constant altitude with a velocity of constant 

magnitude. We assume that the aircraft has been roll stabilized, then the aircraft’s equa- 
tions of motion in the horizontal plane can be written, under certain assumptions, in the 

form [9* lo] 

dqidt = x2, dx~ldt = a::x2 $- a23x3 -j- bzu, dx,/dt = LZ~~X~ + as3x3 -j- b,u (3.9) 

Here z1 and z3 are the course and the sideslip angles, x2 is the angular course velocity, 

u is the angle of deflection of the aerodynamic surfaces satisfying the condition 1 u i< 

< UO, where ug is the maximal possible deflection angle, the constant coefficients ass, 

a23> 9. a33, 62, 63 are determined by the aerodynamic and weight design of the aircraft 

and by the velocity of the motion of the center of gravity. 
Let us assume that the desired mode of motion of the aircraft is motion with a constant 

course angle zi = 9. Then, obviously, the desired state of system (3.9) will be the state 

z = 0. Suppose that the feedback (1.2) which stabilizes this state satisfies conditions 

(1.3) (or (3.1)),(1.4),(1,7); as a consequence of the constraint 1 u 1 < uo, it also satis- 
fies condition (1.5). The matrix A in system (3.9) has at least one zero eigenvalue 
(the aircraft without feedback is indifferent to the course angle). Therefore, system(3.9). 

(1.2) has only the one stationary state x = U. 

4. Stability of the ,trtfonrry Itate). In this section we shall assume 

that the hypotheses of Theorem 2.2 are fulfilled, i. e. we shall take it that det (A) +O 

and I = 2p + 1. 
kt 5, # 0 be a stationary state of system (1.1),(1.2), corresponding to the roots 

us $r L) of Eq. (2.12). Let us consider the question of the stability of this stationary 

state. 
By means of the relation 
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s=q+y (4.1) 

we introduce the vector y of new variables. We shall take it that the function q (a) is 
analytic in some neighborhood of the value oT,, 

q (4 = CP (Q,) + 9’ (6,) (5-4 + (um!) fpy~~) (0 - 6p + 0 [(a - b,p+v (4.2) 

Here mis the order of the first, after cp’ (a,) , nonzero derivative of the function 43 (0) 

at the point a,.and 0 [(a - a,) mfl] is a function whose expansion starts with terms of 

order not less than m + 1. Then system (l.l), (1.2) can be written in the form 

$ = Ay + bq’ (a,) cy + b -&‘” (as) (q)” + bO t(cy)““l (4-3) 

The question of the stability of the stationary state Z, of system (1.1). (1.2) is reduced 
to the question of the stabiliq of the equilibrium state 11 = 0 of system (4.3). The first 

approximation equation for system (4.3) has the form 

dz / dt = (A + rp’ (a,)bc)z (4.4) 

Let us first consider the situation when the inequality 

(-1 / CA-‘b)a < cp (a) (4.5) 
holds for some E > 0 and for all values of o,satisfying the condition o,-E < o < us, 
A similar situation holds in Fig. 1 at the points o-s, CL,, oi. Obviously, the inequality 

-1 / CA-‘b > ‘p’ (CT,) (4.6) 
holds under condition (4.5). 

let us show that the following theorem holds. 

Theorem 4.1. If cp’ (a,) < - 1 / CA-lb, then the stationary state z, of system 

(1. l), (1.2) is unstable. 
System (4.4) differs from system (1.6) only in that in system (4.4). cp’ (a& occurs in 

the place of the quantity k . Therefore, as follows from inequality (2.16). the inequality 
CF’ (us) > --i/c-4-% is a necessary condition for the asymptotic stability of system (4.4). 

As we see from (4.6). this necessary condition is not fulfilled in the situation of (4.5). 
When strict inequality holds in relation (4.6) (the curve 11 = cp (a) intersects at the point 

c = c, the straight line u= (-ilc4-1b)c passing from the upper halfplane to the lower), 

system (4.4), and, hence, also system (4.3) [ll]. is unstable. 
Suppose that equality holds in relation (4.6) (the curve u = ~(0) is tangent to the 

straight line u = (-1 / c/l-lb) a) at the point u = 08), Then, as follows from expres- 

sions (4.2) and (4.5). 

cp(“)(ci,)>O, . if m = 2q (4.7) 

cpCm) (0,) < 0 9 if m = 2q + 1 (q is an integer) 

When equality holds in relation (4.6). systems (4.3) and (4.4) acquire the form 

-&&f b$ cp(“) (0s) (CYY + bO I(cY)mtll (4.8) 

dz 
dt= (6-9) 

System (4.9) has a zero eigenvalue corresponding to the integral CA-‘Z = const. If 

among the remaining ones there is an eigenvalue with positive real part, then system 
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(4.9). and, hence, also system (4.8). is unstable. 
Let us assume that A1 = 0 is a simple eigenvalue of system (4.9) and that all the 

remaining eigenvalues have negative real parts, 

Rehi<O (i = 2, 3,. . ., n) (4.10) 

The values hi (i = 1, 2, . . . . n) are the roots of the characteristic equation 

det (A -~/CA-% -hE) = 0 (4.11) 
We prove the following theorem. 
Theorem 4. 2. If v’ (cr,) = - 1 / cA-~~, Eq. (4.11) has a simple zero root, 

and the real parts of the remaining roots are negative, then the stationary state 2, is 
unstable. 

The assumptions made reduce the problem of the stability of the system (4.8) to the 

investigation of the so-called [ll] critical case of one zero root. Let us apply the results 
obtained by Liapunov ( [ll], pp. 92-96) for this critical case to the problem being con- 
sidered here. In accord with the investigative method suggested in [ll] we shall accept 

the integral ~1 = c4-l~ of the linear system (4.9) as the new variable for system (4.8). 

Furthermore, we introduce new variables ~2, ,.., v,, such that the corresponding transfor- 
mation y = DV is nonsingular. Then, system (4.8) acquires the form 

Dv + D-lb y$ I$~) (6,) (CD)“’ + D-lb0 [ (cDv)“‘+l] (4.12) 

Moreover, the first equation of this system (it is obtained by multiplying system (4.8) 
on the left by the row c-4-r) has the form 

dvl 
- = c&-lb - 
dt il cp’“‘(a,) (cDv)~ + c/1-%0 [(cDv)“+‘] 

We equate the right-hand sides of Eqs. (4.12) to zero, 

A - --$ii6 Dv -/-. b & (ptrn) (a,) (cDv)~ + b0 [ (cDv)~+~] =0 

(4.13) 

(4.14), 

Let us look upon the last (n - 1) scalar relations in system (4.14) as equations in the 
variables ~‘2, . . . . v,, taking V, as an independent variable [ll]. Let 

vi = ui (Vl) (i = 2, 3, . . . . n) (4.25). 

be the solution of these equations, where ni (0) = 0. 
By multiplying relation (4.14) on the left by the row CA-~, we obtain 

CA-‘Do - s CDV + cA-?b -$ (ptrn) (OS) (~Zlv)~ + c/l--2 b0 [(~Dv)~+~] = 0 (4.16). 

The first term in Eq, (4.16) is the variable ~1. The solution of Eq, (4.16) with respect 
to the variable cDv can be expanded into a series in the variable vr in the following 

manner : 
CDV = s VI + . . . (4.27) 

where the dots denote terms of higher order in the variable 9. Hence it follows that 
the quantity cDv (y), where v (vJ is a column consisting of the functions ~1, Q (cl)? ..- 
. . . . % (~1) , also can be expanded into series (4.17). 

We make a change of variables in system (4.12fby means of the relations 

u1= VI, vi~wi+ui(vl) (i=2, 3,..., n) 

After this change Eq. (4.13) acquires the form 
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dvl Idt = mm + VI (VI, ws, . . . . wn) (4.18) 

where. in correspondence with (4. l?), 

(4.19) 

the function ‘V, (y, WP, . . . . w,,) contains terms whose dimesion is not less than m, and the 
expansion of the function VI (q,O,..., 0) starts with terms whose degree is not less than 
mf 1. 

If m = 2q, system (4.8) is unstable [ll] independently of the sign of the coefficient g. 
If m = 2q -I- i, the solution of the stability problem does depend on the sign of coef- 

ficient g. In expression (4.19) the signs of all the quantities excepting the quantity 
xA-% are known. Let us find the sign of this one quantity. 

‘Using the determinantal relation [3], the characteristic equation (4.11) is written in 
the form c (A - XE)-’ b 

CA-% = I 0 (4.20) 

In this equation the free term equals zero. The expansion of the expression within the 
brackets in powers of 3i starts with the term --X (~A+%lcA-~b). From inequalities (4.10) 
it follows that the sign of the coefficient of h” in Eq. (4.20) equals the sign of the coef- 
ficient of h. This condition can be written in the form 

(-i)n det (A) (-cAWcA-lb) > 0 (4.21) 

Using the condition that E = 2p + 1 and the inequalities (2.16) and (2.18), instead of 
relation (4.21) we obtain the desired inequality 

CA-% < 0 (4.22) 

From inequalities (4.7) and (4b22) it follows that if m = 2q + 1, then g > 0. Con- 
sequently, system (4.8) is unstable when m is odd [ll]. 

The critical cases when Eq, (4.11) has multiple zero roots or has a zero root and a 
pair of pure imaginary roots, while the real parts of the remaining roots are negative. 
remain uninvestigated, 

We now look at another situation, Suppose that there exists e > 0 such that the 
inequality (--1 / cd-%)a > ‘p (a) (4.23) 

holds for ail values of d satisfying the condition a, - e < u < u, . A similar situa- 
tion holds on the Fig.1 at the points cr_,, us. From condition (4.23) we obtain that 

--1 I CA -‘b < tp’ (b,) (4.24) 

If strict inequality holds in relation (4.24) (the curve Z.J = ~9 (a) intersects at the point 
u = 0, the straight line u = (--1-j CA -lb) o passing from the lower haifplane to the 
upper), then this signifies that only the necessary stability condition (2.18) is fulfilled. 
We cannot make a successful conclusion regarding the stability in this case. For example, 
the state z, is obviously asimptoti~lly stable if 9’ (03 = k, As follows from 11-j. the 
state z* will be asymptotically stable also for all values of ‘p’ ((3,) sufficiently close to 
the value k. 

We now examine the case when equality holds in relation (4.24). Here, as follows 
from expressions (4.2) and (4.23). 

#@ (0,) < 0, if m=2q 

cpf@ (6,) I== 0, if m = 2q + 1 (4.25) 
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In the case being considered systems (4.3) and (4.4) acquire the form (4.8) and (4.9) , 
respectively. We shall assume that inequality (4.10) holds and, here, the stability prob- 
lem reduces to the investigation of the critical case of one zero root. In this case stabi- 

lity is determined by the quantities m and g in Eq. (4.18). When m is even the state x, 

is unstable [ll]. 
Now let m = 2q f 1. Here, as follows from inequalities (4.22) and (4.25) the coef- 

ficient g < 0. and, consequently 1111, the stationary state x, is asymptotically stable. 

Thus, the following theorem holds in the situation of (4.23). 

Theorem 4. 3. If cp’ (a,) = - 1 /CA-VI, Eq. (4.11) has a simple zero root 
while the real parts of the remaining roots are negative, then the stationary state I, of 

system (1.1). (1.2) is unstable for even m and is asymptotically stable for odd m. 
Thus, in the situation of (4.23) the state xs can be both asymptotically stable and 

unstable depending on the behavior of the function ‘p (0) . 
For the Eqs. (2.21) and (3.8), presented as examples in the preceding sections, the 

stationary states .5.-i= A-lbM and x1 = - A-lbM are unstable. This follows from Theo- 

rem 4.1. 

6. 8 trbility region, Let W denote the region of attraction (the stability region) 
of the origin, i.e. the set of states .z from which system (1. l), (1.2) asymptotically goes 
into the origin. Obviously, there exists a neighborhood S of the origin, belonging wholly 

to region W. 

If system(l.1). (1.2) has only one equilibrium state z = L this still does not mean 
that the region ti coincides with the whole space X. If, however, the system has more 
than one stationary state, then we can assert that region W does not coincide with the 
whole space X. 

From Theorem 2.2 it follows that if matrix A is nonsingular and if the number of its 

positive eigenvalues is odd, then the region W does not coincide with the whole spaceX, 
i. e. system (1.1). (1.2) is not stable “in-the-large”. 

If function (1.2) is bounded, Iq (o)l< M, as in examples (2.21),(3.8) and (3.9j, then 
the region .W occupies only a part of space X in any case when there are eigenvalues 
with positive real part in matrix A. Indeed, as follows from @, 121 for example, in such 
a case the so-called region Q of controllability of system (1.1) with controls ju (t)l < M 

occupies only a part of space X, and W c Q. 

We take an arbitrary point z,, E W. There exists an instant T such that the trajectory 

2 (I~, t) of system (1.1). (1.2). starting from the point zO. turns out to be inside the neigh- 
borhood S at this instant, z (z,, T) E S. From the fact of the continuous dependence 

of the solution on the initial conditions if follows that the trajectories starting from a 
sufficiently small neighborhood of the point z ,,, turn out to be in the neighborhood S at 
the instant T. It follows from this that the region PP is open. 

Let R denote the set of limit (boundary) points of region W. If z,, E R, then z (zO, t)~ 
E R for all t. This follows readily from the continuous dependence of the solution on 

the initial conditions. In other words, the boundary fl of the stability region w-,consists 
wholly of integral trajectories of system (1.1). (1.2). 

It is not difficult to see that only the unstable stationary statesofsystem (1. l), (1.2) 
may belong to the boundary fi . 
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SELF-SIMILAR SOLUTIONS OF THE BELLMAN EQUATION 

FOR OPTIMAL CORRECTION OF RANDOM DISTURBANCES 
PMM vol. 35, Np2. 1971, pp. X33-342 

F. L. CHERNOUS’KO 

(Receive %&?l4, 1970) 6 

A nonlinear second order partial differential equation (Bellman equation) is solved for 
some characteristic problems of optimal correction of motion in the presence of random 
distrubances and integral constraints on the control function. 

For these problems, classes of self-similar (invariant group) solutions of the Bellman 

equation are computed. Some exact analytical solutions are obtained. 

1. Pormulrtion of problem. Let the motion of the system be described by 

the following equation : 

dx / dt = fz (t)u + b (t)E, 5 (to) = 20 (1-l) 

Here t is time, x is the scalar phase coordinate, u is the control function, E is the 
random disturbance which is represented by white noise of constant intensity, a (t) and 

b (t) are given functions of time which have the meaning of control efficiency and 


